
Commutative Rational Term Rewriting

Mamoru Ishizuka1, Takahito Aoto1[0000−0003−0027−0759], and Munehiro
Iwami2[0000−0001−9925−450X]

1 Niigata University, Niigata, Japan
{ ishizuka@nue., aoto@ }ie.niigata-u.ac.jp

2 Simane University, Shimane, Japan
munehiro@cis.shimane-u.ac.jp

Abstract. Term rewriting for rational terms, i.e. infinite terms with
a finite number of different subterms, has been considered e.g. in Cor-
radini & Gadducci (1998) and Aoto & Ketema (2012). In this paper,
we consider rational term rewriting by a set of commutativity rules i.e.
rules of the form f(x, y) → f(y, x), based on the framework of Aoto &
Ketema (2012). A rewrite step with a commutativity rule is specified via
a regular set of redex positions, thus via a finite automaton. We present
some finite automata constructions that correspond to (in particular)
taking inverse rewrite steps, merging two branching rewrite steps, and
merging two consecutive rewrite steps. As a corollary, we show that ra-
tional rewrite steps by the commutativity rules are closed under taking
equivalence of the rewrite steps.

Keywords: Rational term rewriting · Commutativity · Finite automata.

1 Introduction

Term rewriting systems (TRSs) is a computational model based on equational
logic [3]. Besides the standard rewriting formalism, many variations and exten-
sions have been considered. One direction of such extensions is towards incorpo-
rating infinitary phenomena for various aspects of computation. In particular,
there is a long history of investigations on infinitary rewriting where (infinitary
long) rewriting of infinite terms is considered, and that on graph rewriting where
rewriting of (cyclic or acyclic) term graphs is considered (see e.g. [11, 2, 10]). In
this paper, we consider yet another such a formalism of rewriting dealing with
infinitary phenomena, rewriting of rational terms.

Rational terms are infinite terms with a finite number of different subterms
[6, 8, 5, 1]. Unraveling a cyclic term graph into an infinite term yields a term that
is rational, and rational terms are represented finitely [6–8]. In [1], a framework of
rational term rewriting has been considered, and some basic decidability results
concerning computations of the rewriting are given. In this framework, a rewrite
step is specified by a rewrite rule and regular set of redex positions; the reduct
is obtained by simultaneously rewriting at the redex positions. In this paper,
we consider (a variant of) rational rewriting by commutativity rules—rewrite

2 M. Ishizuka et al.

rules of the form f(x, y) → f(y, x). Commutative rewriting is a basis of the
C-unification and AC-unification which have been well-studied in the case of
the standard rewriting [4]. To the best of our knowledge, however, commutative
rewriting has been yet beyond the scope of the study in rational term rewriting.

We present some finite automata constructions that correspond to (in par-
ticular) taking inverse rewrite steps, merging two branching rewrite steps, and
merging two consecutive rewrite steps of rational term rewriting by the commu-
tativity rules. It seems such constructions have not been studied in literature.
As a corollary, we show that rational rewrite steps by the commutativity rules
are closed under taking equivalence of the rewrite steps.

2 Preliminaries

In this section, we explain notions and notations that will be used in this paper.
Our definitions and notation follow [1].

2.1 Finite Automata

Let Σ be a finite set of symbols. An empty sequence is denoted by ε and the
concatenation of finite sequence p, q ∈ Σ∗ is denoted by p.q. A deterministic
finite automaton (DFA for short) is a tuple M = 〈Q,Σ, δ, q0, F 〉 where Q is
a set of states, Σ is a set of input symbols, δ : Q × Σ → Q is a transition
function, q0 ∈ Q is an initial state and F ⊆ Q is a set of final states. The
homomorphic extension of δ is denoted by δ̂ : Q×Σ∗ → Q. Let L(M, qi) ⊆ Σ∗

(qi ∈ Q) be the smallest set such that (i) ε ∈ L(M, q0), and (ii) if p ∈ L(M, q)
and δ(q, a) = qi then p.a ∈ L(M, qi). The language of a DFA M is given by
L(M) =

⋃
qi∈F L(M, qi). Let M1 = 〈Q1, Σ, δ1, q1, F1〉,M2 = 〈Q2, Σ, δ2, q2, F2〉

be DFAs and suppose ≈ ⊆ Q1 ×Q2. The relation ≈ is a bisimulation relation if
(i) q1 ≈ q2, (ii) p ≈ q implies δ1(p, a) ≈ δ2(q, a) for any a ∈ Σ and (iii) if p ≈ q,
then p ∈ F1 iff q ∈ F2. Two DFAs M1,M2 are bisimilar (M1 ≈ M2) if there
exists a bisimulation relation. The following property is known (e.g. [9]).

Proposition 1. Let M1,M2 be DFAs. Then, M1 ≈M2 iff L(M1) = L(M2).

2.2 Rational Terms

We denote a set of arity-fixed function symbols by F and a countably infinite
set of variables by V, where F ∩ V = ∅. The arity of function symbol f ∈ F is
denoted by arity(f). Let Fn = {f ∈ F | arity(f) = n}. Function symbols in F0

are called constants. We assume there exists some n ≥ 0 such that arity(f) ≤ n
for all f ∈ F . We denote the set of positive integers by N+, and the set of finite
sequence of positive integers by N∗+. An infinite term t over F and V is a partial
function from N∗+ to F ∪ V such that (i) t(ε) is defined, and (ii) t(p.i) (i ∈ N)
is defined iff t(p) ∈ Fn and 1 ≤ i ≤ n for some n. The set of infinite terms is
denoted by Tinf (F ,V). Infinite terms are often abbreviated as terms below. The

Commutative Rational Term Rewriting 3

set Pos(t) of positions of a term t is the domain of the partial function t. In
particular, ε is called the root position. A term t is a finite term if Pos(t) is a
finite set. The symbol t(p) ∈ F ∪ V is called the symbol at the position p. V(t)
is the set of variables appearing in t, that is V(t) = {t(p) ∈ V | p ∈ Pos(t)}. A
subterm t|p of t at the position p ∈ Pos(t) is a mapping given by t|p(q) = t(p.q).
A term t ∈ Tinf (F ,V) is rational if the set of subterms {t|p | p ∈ Pos(t)} of t is
finite. Clearly, finite terms are always rational.

Example 1. Let g, h ∈ F1. Let s be a partial mapping {ε 7→ g, 1 7→ h, 1.1 7→ x}.
It is easy to see that s is a term; furthermore, the domain of s is a finite set
{ε, 1, 1.1}, and thus s is a finite term. In usual notation, s = g(h(x)). Let t be
a partial mapping given by t(1n) = g for any n ≥ 0, and undefined otherwise.
Here, 1n is the sequence of 1’s of length n. Intuitively, t is an infinite term
t = g(g(g(· · ·))). In fact, the set of subterm of t is given by {t} (i.e. all subterms
are equal to t), thus t is a rational term. Similarly, if we take u = g(h(g(h(· · ·)))),
then the set of subterms of u equals to {u, h(u)}, and hence u is a rational term.
Clearly, u|12n = u and u|12n+1 = h(u) hold for each n ≥ 0. Now, let f ∈ F2 in
addition, and let v be a mapping v = {1i 7→ f | i ≥ 0} ∪ {1i.2.1j 7→ g | i ≥ 0, j <
i} ∪ {1i.2.1i 7→ x | i ≥ 0}. Then v is an infinite term that is not rational. ut

A substitution is a mapping σ : V → Tinf (F ,V) such that its domain
dom(σ) = {x | σ(x) 6= x} is finite. A substitution is identified with its ho-
momorphic extension; as usual, σ(t) is rewritten as tσ.

A regular system is a finite set E = {x1 = t1, . . . , xn = tn} of equations such
that the left hand sides x1, . . . , xn are mutually distinct variables and ti is a
finite term for all 1 ≤ i ≤ n. We set its domain as Dom(E) = {x1, . . . , xn} and
its range as Ran(E) = {t1, . . . , tn}. We write E(y) = t if y = t ∈ E. A variable
xi ∈ Dom(E) is looping if the exists 1 ≤ i1, . . . , ik ≤ n such that xi = ti1 ,
and for each 1 ≤ j ≤ k, tij = xi(j mod k)+1

holds. Otherwise, xi ∈ Dom(E) is
non-looping. Let ⊥ be a new constant and F⊥ = F ∪ {⊥}. We define a term
E?(xi) ∈ Tinf (F⊥,V) for each xi ∈ Dom(E) as follows:

E?(xi)(p) =


ti(p) if p ∈ Pos(ti) and ti(p) /∈ Dom(E)
⊥ if ti(p) = xj ∈ Dom(E) and xj is looping
E?(xj)(q) if there exists p′ such that p = p′.q

and ti(p
′) = xj ∈ Dom(E) and xj is non-looping

undefined otherwise

If E?(x) = t then the pair 〈E, x〉 (Ex in short) is called a representation of t.

Example 2. Let s, u be terms in Example 1. {y = g(z), z = h(x)}y and {y =
g(h(x))}y are representations of s. Let E = {x = g(y), y = h(x)}. Then u =
E?(x) and Ex is a representation of u. If we identify a mapping E with its
homomorphic extension, then we have E0(x) = x, E1(x) = g(y), E2(x) =
E(E(x)) = E(g(y)) = g(E(y)) = g(h(x)), E3(x) = g(h(g(y))), . . . whose
limit will be u. On the other hand, if we set F = {x = y, y = x}, then
F 0(x), F 1(x), F 2(x), F 3(x), . . . are x, y, x, y, . . ., which does not converge. Note

4 M. Ishizuka et al.

we obtain F ?(x) = ⊥. Note that a non-looping regular system can be obtained
by replacing every equation x = t with x looping by x = ⊥. ut

Henceforth, we assume F contains the constant ⊥.
The following proposition on regular systems will be used later.

Proposition 2 (Lemma 3.3 of [1]). Let E and F be regular systems and
suppose there exists a surjection δ : Dom(E)→ Dom(F) such that δ(y) = δ(s) ∈
F for every y = s ∈ E, where δ is homomorphically extended to a substitution
on terms in the usual way. Then, E?(y) = F ?(δ(y)) for every y ∈ Dom(E).

Let E be a regular system and x ∈ Dom(E). Then, define UE(x) as the
smallest set satisfying: (1) x ∈ UE(x), and (2) if y ∈ UE(x) and y = t ∈ E then
V(t) ∩ Dom(E) ⊆ UE(x). We write y vE x if y ∈ UE(x). If E is obvious from
the context, the subscript E may be omitted. Next, for each y v x we define
SPEx

(y) as the smallest set satisfying: (1) ε ∈ SPEx
(x) and (2) if p ∈ SPEx

(z)
and there exists z = t ∈ E such that t|q = y, then p.q ∈ SPEx(y). We also
define SPEx(y) = ∅ for y 6v x. Intuitively, SPEx(y) denotes the set of positions
in E?(x) corresponding to y ∈ Dom(E). Finally, we put for any set W ⊆ UE(x),
SPEx

(W) =
⋃
y∈W SPEx

(y); note SPEx
(U ∪W) = SPEx

(U) ∪ SPEx
(W) and

SPEx
(U \W) = SPEx

(U) \ SPEx
(W) follow from the definition.

Example 3. Let E = {x = f(y, x), y = g(z), z = h(y)} be a regular system. Then
UE(x) = {x, y, z},UE(y) = UE(z) = {y, z}. If we put E?(y) = g(h(g(h(· · ·)))) =
s, then E?(x) = f(s, f(s, f(· · ·))). Now, SPEx(x) = {2n | n ≥ 0}, SPEx(y) =
{2n.12m+1 | n,m ≥ 0} and SPEx(z) = {2n.12m+2 | n,m ≥ 0}. ut

A regular system E = {x1 = t1, . . . , xn = tn} is canonical if E satisfies the
condition: for each 1 ≤ i ≤ n, either (i) ti ∈ V\Dom(E), or (ii) ti = f(y1, . . . , ym)
for some f ∈ Fm and y1, . . . , ym ∈ Dom(E). We say a representation 〈E, x〉 (or
Ex) is canonical if so is E. It is known that from any regular system E one
can construct a canonical regular system F such that (i) Dom(E) ⊆ Dom(F),
(ii) E?(x) = F ?(x) for all x ∈ Dom(E), and (iii) SPEx

(y) = SPFx
(y) for all

x, y ∈ Dom(E) such that y v x.

2.3 Rational Term Rewriting

A pair 〈l, r〉, written also as l → r, of finite terms l and r is a rewrite rule if
l /∈ V and V(l) ⊇ V(r). A term rewriting system (TRS for short) is a finite set of
rewrite rules. A TRS R is said to be orthogonal if l is linear term (any variable
occurs at most once) for any l → r ∈ R, and there is no overlaps between
rules, i.e. l|p and l′ does not unify (w.l.o.g. assuming variables are disjoint) for
rewrite rules l → r, l′ → r′ ∈ R and for each non-variable position p in l (when
l→ r = l′ → r′, we moreover assume p 6= ε).

Definition 1. Let R be an orthogonal TRS and s, t be rational terms. We have
a development rewrite step s −→◦ R t if there exist representations Ex and Fx of

Commutative Rational Term Rewriting 5

s and t, resp., such that Dom(E) = Dom(F), and a set W ⊆ Dom(E) such that
(1) E(y) = F (y) for any y ∈ Dom(E) \W and (2) for any y ∈W , there exist a
rewrite rule l→ r ∈ R and a substitution ρ such that E(y) = lρ and F (y) = rρ.

We say that the rewrite step s −→◦ t is specified by 〈Ex, Fx,W 〉, or s −→◦ t is
a rewrite step obtained by applying the rewrite rules on W of Ex. If R is clear
from the context, s −→◦ R t is abbreviated as s −→◦ t. The set of redex positions of
the rewrite step is given by ∆ = SPEx(W), and we write s −→◦ ∆ t to make the
redex positions explicit. Note that a rewrite step may be specified by multiple
representations.

Example 4. Let F = {f, g, h,⊥} and R = {f(x, y) → f(y, x), g(x, y) → g(y, x)}.
Let E = {x = f(x, y), y = g(y, y)}, F = {x = f(y, x), y = g(y, y)} be regular
systems. Let W = {x}. Then, we have a rewrite step s −→◦ ∆ t, where s =
E?(x), t = F ?(x) and ∆ = SPEx

(W) = {1n | n ≥ 0}. This rewrite step is
specified by 〈Ex, Fx,W 〉. Let E′ = {x = f(z, y), z = f(x, y), y = g(y, y)}, F ′ =
{x = f(z, y), z = f(y, x), y = g(y, y)} be regular systems. Then we have E′?(x) =
s. Thus, by applying the rewrite rule on W ′ = {z} of E′x, we obtain a rewrite
step s −→◦ Γ u, where u = F ′?(x) and Γ = SPE′x(W ′) = {12n+1 | n ≥ 0}. Lastly,
suppose G = {x = f(z, y), y = g(z, x), z = h(z)} and H = {x = f(y, z), y =
g(x, z), z = h(z)}. Then, we have G?(x) −→◦ H?(y). The step G?(x) −→◦ H?(y) is
specified by 〈Ex, Fx, {x, y}〉. As in the last example, different rewrite rules can
be employed in a single development rewrite step. ut

Remark 1. In [1], a (standard) rewrite step s→ t is defined in such a way that a
single rewrite rule is allowed to use in a rewrite step; the restriction is needed to
deal with rewriting of possibly non-orthogonal TRS in general (see Remarks 4.3
and 4.4 in [1]). Contrast to this, in the development rewrite step s −→◦ t, different
rewrite rules l → r ∈ R can be employed depending on y ∈ W . Note, however,
because of the orthogonality, there can not be multiple candidates for such a
rewrite rule for each y ∈W .

In this paper, we focus on development rewrite steps by a set of commutativity
rewrite rules, i.e. rules of the form f(x, y) → f(y, x). It should be also clear
that any development rewrite step can be specified on canonical representations
because of the form of the commutativity rules. Thus, we will w.l.o.g. specify a
rewrite step via canonical representations.

2.4 Products of Canonical Regular Systems

In this subsection, we present some basic properties of the product construction
of canonical regular systems, which will be used in the subsequent proofs.

Definition 2 (product of canonical regular systems). Let E,F be canon-
ical regular systems. We define the product E × F of E and F as follows.
E × F = {〈x, y〉 = f(〈x1, y1〉, . . . , 〈xn, yn〉) | x = f(x1, . . . , xn) ∈ E and
y = f(y1, . . . , yn) ∈ F} ∪ {〈x, y〉 = z | x = z ∈ E, y = z ∈ F and z /∈
Dom(E) ∪ Dom(F)}. Now, by regarding the pairs of variables as variables, we
treat E × F as a canonical regular system.

6 M. Ishizuka et al.

The following lemmas characterizes the term represented by (E×F)〈x,y〉 and
the positions in it, in terms of those in Ex.

Lemma 1. Let E,F be canonical regular systems and x ∈ Dom(E), y ∈ Dom(F)
such that E?(x) = F ?(y). Then, E?(x) = (E × F)?(〈x, y〉).

Lemma 2. Let E,F be canonical regular systems and x ∈ Dom(E), y ∈ Dom(F)
such that E?(x) = F ?(y). Let W ⊆ Dom(E). Then, SPEx(W) = SP(E×F)〈x,y〉(W×
Dom(F)).

Using these lemmas, we can characterize rewrite steps of the products.

Lemma 3. Let R be a TRS and Ex a canonical representation of s. Suppose a
rewrite step s −→◦ Γ

R t is obtained by applying the rewrite rules on W ⊆ Dom(E) of
Ex. Let F be a canonical regular system such that s = F ?(y). Then, (E×F)〈x,y〉
is a representation of s, and the rewrite step s −→◦ Γ

R t is obtained by applying
the rewrite rules on W ×Dom(F) of (E × F)〈x,y〉.

Proof. By the assumption, s = E?(x) and Γ = SPEx(W). Then by Lemma 1,
we have s = (E × F)?(〈x, y〉). Moreover, by Lemma 2, Γ = SPEx(W) =
SP(E×F)〈x,y〉(W ×Dom(F)). Thus the claim follows. ut

3 Automata for Inverse Rewrite Steps

In what follows, we consider rewrite steps by commutativity rules and charac-
terize the set of redex positions of rewrite steps via automata. For this, several
conventions, which are going to be introduced now, are useful.

First, we assume n = maxf∈F arity(f) ≥ 2; as, otherwise, one does not have
any rewrite step by commutativity rules. And, for the automata characterizing
the redex positions, we use DFAs over the signature Σ = {1, . . . , n}; we put
them as position automaton.

Definition 3 (position automata). A DFA M = 〈Q,Σ, δ, q0, F 〉 is said to be
a position DFA if Σ = {1, . . . , n}.

Now, to work with position DFAs, it is useful to identify each rational term
as a complete n-tree, i.e., an infinite tree where all nodes have n-children. Let us
assume arity(f) = n for any f ∈ F (including the case f = ⊥). The rationale for
this convention is that we encode t = f(t1, . . . , tl) (l ≤ n) over the original sig-
nature by t◦ = f(t◦1, . . . , t

◦
l , t⊥, . . . , t⊥), where t⊥ = {x⊥ = ⊥(x⊥, . . . , x⊥)}?(x⊥)

and x⊥ is a special variable reserved for this equation. Thus, we assume an
equation x⊥ = ⊥(x⊥, . . . , x⊥) is (implicitly3) included to any regular system E.
Moreover, we also identify each equation x = z ∈ E where z ∈ V \ Dom(E) with
the equation x = z(x⊥, . . . , x⊥). Using these conventions, each rational term is
identified with a complete n-tree labelled by f ∈ F or z ∈ V.

3 To ease the readability, however, we omit below the equation x⊥ = ⊥(x⊥, . . . , x⊥)
if the equation is not necessary, i.e. if there is no equation in E such that its right
hand side is a variable or all f ∈ F originally have the same arity.

Commutative Rational Term Rewriting 7

Example 5. Let F = {f, g,⊥}, E = {x = f(x, y, z), y = g(y), z = w}. We iden-
tify E with E′ = {x = f(x, y, z), y = g(y, x⊥, x⊥), z = w(x⊥, x⊥, x⊥), x⊥ =
⊥(x⊥, x⊥, x⊥)}. ut

Let FC ⊆ F and C = {f(x1, x2, x3, . . . , xn) → f(x2, x1, x3, . . . , xn) | f ∈
FC}. This C is the TRS that we will consider henceforth.

We now show that a DFA that recognized the set of redex positions of a
rewrite step can be constructed via canonical regular system that specify that
rewrite step.

Definition 4 (canonical DFA). Let E be a canonical regular system and W ⊆
Dom(E), x ∈ Dom(E). Then the canonical DFA for 〈Ex,W 〉 is a position DFA
M(Ex,W) given by 〈Dom(E), Σ, δ, x,W 〉, where δ : Dom(E)×Σ → Dom(E) is
defined as δ(y, i) = E(y)|i.

Example 6. Let F = {f, g}, E = {x = f(y, x), y = g(y, y)} and F = {x =
f(x, y), y = g(y, y)}. By applying commutativity rule f(x, y) → f(y, x) to W =
{x} on Ex we have s →∆ t where ∆ = {2n | n ≥ 0}, s = E?(x) and t =
F ?(x). Now, the DFA recognizing ∆ is obtained as M(Ex,W) = 〈Dom(E)(=
{x, y}), Σ(= {1, 2}), δ, x,W 〉, where δ(z, i) = E(z)|i. ut

Lemma 4 (redex positions and the language of canonical DFAs). Let
s −→◦ ∆ t be a rewrite step specified by 〈Ex, Fx,W 〉. Then ∆ = L(M(Ex,W)) .

Since commutativity rules are symmetric, the rewrite steps by commutativity
rules are symmetric. From our definition and the previous lemma, the set of redex
positions of the inverse rewrite step also becomes clear.

Lemma 5 (positions of inverse rewrite step). Let s −→◦ t be a rewrite
step specified by 〈Ex, Fx,W 〉. Then we have a rewrite step t −→◦ Λ s specified by
〈Fx, Ex,W 〉, where Λ = L(M(Fx,W)).

Now, what is the relation between the set ∆ in s −→◦ ∆ t and the set Λ in
t −→◦ Λ s? Since these set ∆ and Λ are regular sets, the relation should be also
characterized via automata. This motives us to define an “inverse” automaton.

The following convention is very useful hereafter: for i ∈ Σ, we let 1̄ = 2, 2̄ =
1, ī = i (3 ≤ i ≤ n).

Definition 5 (inverse automata). Let M = 〈Q,Σ, δ, q0, F 〉 be a position
DFA. Then we define the inverse automaton of M by M−1 = 〈Q,Σ, δ′, q0, F 〉
where

δ′(q, i) =

{
δ(q, ī) if q ∈ F
δ(q, i) otherwise.

We remark that M−1 is a position DFA and (M−1)−1 = M .
First, we consider automata that recognize ∆ and Λ of a rewrite step s −→◦ ∆ t

and its inverse t −→◦ Λ s obtained by the triple 〈Ex, Fx,W 〉 that specifies these
rewrite step. We show that the automaton for the latter is the inverse of the one
for the former.

8 M. Ishizuka et al.

Lemma 6 (inverse of canonical DFA). Let s −→◦ t be a rewrite step specified
by 〈Ex, Fx,W 〉. Then we have M(Ex,W)−1 =M(Fx,W).

We now show that the inverse operation preserves the equivalence of the
languages.

Lemma 7 (language preservation of inverse). Let M1,M2 be position DFAs.
If L(M1) = L(M2) then L(M−11) = L(M−12).

Based on our preparations so far, we are now going to show that regardless
of the specification of rewrite steps, inverse rewrite steps are given by reducing
the redex positions of the inverse automaton.

Theorem 1 (inverse rewrite steps and inverse automaton). Let M be a
position DFA and suppose s −→◦ ∆

C t where ∆ = L(M). For Λ = L(M−1), we
have t −→◦ Λ

C s.

Proof. Suppose s −→◦ ∆ t is specified by 〈Ex, Fx,W 〉. Then, by Lemma 4, we have
∆ = L(M(Ex,W)). Hence, L(M) = ∆ = L(M(Ex,W)) is obtained. Then, by
Lemma 7, L(M−1) = L(M(Ex,W)−1). On the other hand, by Lemma 5, we have
t −→◦ Γ s where Γ = L(M(Fx,W)). Furthermore, by Lemma 6, M(Ex,W)−1 =
M(Fx,W). Thus, Λ = L(M−1) = L(M(Ex,W)−1) = L(M(Fx,W)) = Γ .
Therefore, from t −→◦ Γ s, we obtain t −→◦ Λ s. ut

Before ending this section, we remark that the results in this section hold not
only for the development rewrite step −→◦ but also for the rewrite step →, i.e.
s →∆

C t implies t →Γ
C s. The situation, however, becomes different in the next

section.

4 Automata for Join of Branching Steps

From this section, we consider automata constructions that arise from branching
development rewrite steps, i.e. rewrite steps of the form t←−◦ s −→◦ u.

The first operation we consider is called join of branching steps. Let us
explain the intuition of the join of rewrite steps informally. Suppose we have
branching rewrite steps from s as s −→◦ Γ t and s −→◦ ∆ u. The join of two
rewrite steps expresses the effect of doing these two reductions simultaneously.
However, this does not mean rewriting all the positions in Γ ∪ ∆, that is, for
p ∈ Γ ∩∆, we consider applying the commutativity rule twice has an effect same
as s|p = f(s1, s2)→ f(s2, s1)→ f(s1, s2) = s|p. That is, we regard that the one
rewrite step at s|p is cancelled by the other. Thus, the join of the redex positions
is defined as follows.

Definition 6 (join of position sets). Let Γ,∆ ⊆ Pos(s). The join of Γ and
∆ is defined as Γ ⊕∆ = {p ∈ Γ | p /∈ ∆} ∪ {p ∈ ∆ | p /∈ Γ}.

Example 7. Let FC = {f, g} and s = {x = f(y, z), y = g(y, w), z = g(w, z), w =
h(w,w)}?(x). Let Γ = {1n | n ≥ 0} and ∆ = {2n | n ≥ 0}. We have s −→◦ Γ⊕∆ t,
where t = {x = f(y, z), y = g(w, y), z = g(z, w), w = h(w,w)}?(x). ut

Commutative Rational Term Rewriting 9

We now want to achieve the effect of doing reduction at Γ ⊕ ∆ on regular
systems. Note that two rewrite steps s −→◦ Γ t and s −→◦ ∆ u may be achieved
using different regular systems. To synchronize two regular systems, we use the
product construction.

We now introduce a notation that is used in the lemma below. Let E,E′

be regular systems and W ⊆ Dom(E),W ′ ⊆ Dom(E′). We put W ⊕ W ′ =
(W ×W ′c) ∪ (W c ×W ′). Here, W c = Dom(E) \W and W ′c = Dom(E′) \W ′.

Lemma 8 (join of branching steps). Let Ex, E
′
x′ be regular representations

of s. Let s −→◦ Γ t (s −→◦ ∆ u) be the rewrite step obtained by applying the
rewrite rules on W ⊆ Dom(E) of Ex (W ′ ⊆ Dom(E′) of E′x′ , respectively).
Then, (E×E′)〈x,x′〉 is a regular representation of s, and by applying the rewrite
rules on W ⊕W ′ of (E × E′)〈x,x′〉, one obtains a rewrite step s −→◦ Γ⊕∆ v for
some v. (Hence, Γ ⊕∆ = L(M((E × E′)〈x,x′〉,W ⊕W ′)).)

The previous lemma motivates us to introduce the following automata con-
struction.

Definition 7 (join automata). We define the join automaton M1⊕M2 of two
position DFAs M1 = 〈Q1, Σ, δ1, q1, F1〉 and M2 = 〈Q2, Σ, δ2, q2, F2〉 as follows:
M1 ⊕M2 = 〈Q1 ×Q2, Σ, δ, 〈q1, q2〉, F1 ⊕ F2〉, where

– δ is given like this: δ(〈x, y〉, i) = 〈δ1(x, i), δ2(y, i)〉 and
– F1 ⊕ F2 = {〈x, y〉 | x ∈ F1, y ∈ Q2 \ F2} ∪ {〈x, y〉 | x ∈ Q1 \ F1, y ∈ F2}.

Next lemmas are easily obtained.

Lemma 9 (join of canonical DFAs). Let Ex, E
′
x′ be regular representations

of s, W ⊆ Dom(E), and W ′ ⊆ Dom(E′). Then, M(Ex,W) ⊕M(E′x,W
′) =

M((E × E′)〈x,x′〉,W ⊕W ′).

Lemma 10 (language preservation of join). Suppose that M1,M2,M
′
1,M

′
2

are position DFAs. If L(M1) = L(M ′1) and L(M2) = L(M ′2) then L(M1⊕M2) =
L(M ′1 ⊕M ′2).

We now arrive the main theorem of this section.

Theorem 2 (join rewrite steps and join automata). Let M1,M2 be posi-
tion DFAs. Suppose s −→◦ Γ

C t and s −→◦ ∆
C u, where Γ = L(M1) and ∆ = L(M2).

Then, s −→◦ Γ⊕∆
C v and Γ ⊕∆ = L(M1 ⊕M2) for some v.

Proof. Suppose that the rewrite step s −→◦ Γ t (s −→◦ ∆ u) is obtained by applying
the rewrite rules on W of Ex (W ′ of E′x′ , respectively). Then Γ = L(M1) =
L(M(Ex,W)) and ∆ = L(M2) = L(M(E′x′ ,W

′)). Then, by Lemma 10, we have
L(M1 ⊕M2) = L(M(Ex,W)⊕M(E′x′ ,W

′)). By Lemmas 8 and 9, s −→◦ Γ⊕∆ v
and Γ ⊕∆ = L(M((E ×E′)〈x,x′〉,W ⊕W ′)) = L(M(Ex,W)⊕M(E′x′ ,W

′)) =
L(M1 ⊕M2). ut

Remark 2. For branching (standard) steps s →Γ
C t1 and s →∆

C t2, we obtain
s −→◦ Γ⊕∆

C v, as s→C ti implies s −→◦ C ti. However, because the employed rules
in s →Γ

C t1 and s →∆
C t2 may be different, it is not always the case s →Γ⊕∆

C v.
This is why we had to introduce the development rewrite step −→◦ .

10 M. Ishizuka et al.

5 Automata for Difference of Branching Steps

Suppose that we have s −→◦ Γ
C t, s −→◦ ∆

C u and s −→◦ Γ⊕∆
C v. Then, naturally there

would be a rewrite step that will close the gap between t and v (u and v)—we
will call rewrite steps such as t −→◦ v and u −→◦ v ’difference’ of that branching
rewrite steps. Below we present an automata construction that capture taking
the difference of that branching rewrite steps.

Below, we put (f(t1, t2, t3, . . . tn))C = f(t2, t1, t3, . . . , tn).

Lemma 11 (difference of branching steps). Let Ex, E
′
x′ be regular repre-

sentations of s. Let s −→◦ Γ t (s −→◦ ∆ u) be the rewrite step obtained by applying
the rewrite rules on W ⊆ Dom(E) of Ex (W ′ ⊆ Dom(E′) of E′x′ , respectively).
Suppose s −→◦ Γ⊕∆ v.

1. Let F = {〈y, y′〉 = wC | 〈y, y′〉 = w ∈ E × E′, y ∈ W} ∪ {〈y, y′〉 = w ∈
E × E′ | y /∈ W}. Then, F〈x,x′〉 is a regular representation of t and one
obtains a rewrite step t −→◦ v by applying the rewrite rules on Dom(E)×W ′
of F〈x,x′〉.

2. Let F ′ = {〈y, y′〉 = wC | 〈y, y′〉 = w ∈ E × E′, y′ ∈ W ′} ∪ {〈y, y′〉 = w ∈
E × E′ | y′ /∈ W ′}. Then, F ′〈x,x′〉 is a regular representation of u and one

obtains a rewrite step u −→◦ v by applying the rewrite rules on W ×Dom(E′)
of F ′〈x,x′〉.

The characterization of the previous lemma motivates us to define the differ-
ence automata as follows.

Definition 8 (difference automata). Let M1 = 〈Q1, Σ, δ1, q1, F1〉, M2 =
〈Q2, Σ, δ2, q2, F2〉 be position DFAs. We define the difference automaton by M2\
M1 = 〈Q1 ×Q2, Σ, η, 〈q1, q2〉, Q1 × F2〉, where η is given like this:

η(〈x, y〉, i) =

{
〈δ1(x, ī), δ2(y, ī)〉 if x ∈ F1

〈δ1(x, i), δ2(y, i)〉 otherwise.

The next lemma is shown using Lemma 11.

Lemma 12 (difference of canonical DFAs). Let s −→◦ Γ t (s −→◦ ∆ u) be
obtained by applying the rewrite rules on W of Ex (on W ′ of E′x′ , respectively).
Suppose s −→◦ Γ⊕∆ v. Then (1) t −→◦ Λ v where Λ = L(M(E′x′ ,W

′)\M(Ex,W)),
and (2) u −→◦ Π v where Π = L(M(Ex,W) \M(E′x′ ,W

′)).

Lemma 13 (language preservation of difference). Let M1,M
′
1,M2,M

′
2 be

position DFAs such that L(M1) = L(M ′1) and L(M2) = L(M ′2). Then, L(M2 \
M1) = L(M ′2 \M ′1).

Thus, we are ready to show that the difference of branching rewrite steps is
characterized by the difference automata.

Commutative Rational Term Rewriting 11

Theorem 3 (difference rewrite steps and difference automata). Let M1,M2

be position DFAs. Let s −→◦ Γ
C t and s −→◦ ∆

C u, where Γ = L(M1) and ∆ = L(M2).
Suppose s −→◦ Γ⊕∆

C v. Then, (1) t −→◦ Λ
C v, where Λ = L(M2 \ M1), and (2)

u −→◦ Λ′

C v, where Λ′ = L(M1 \M2).

Proof. We here only show (1), as (2) can be shown in the symmetric way. Suppose
that the rewrite step s −→◦ Γ t (s −→◦ ∆ u) is obtained by applying the rewrite rules
on W of Ex (W ′ of E′x′ , respectively). Then Γ = L(M1) = L(M(Ex,W)) and
∆ = L(M2) = L(M(E′x′ ,W

′)). Then, it follows from Lemma 13 that L(M2 \
M1) = L(M(E′x′ ,W

′) \ M(Ex,W)). By Lemma 12, t −→◦ Λ v by taking Λ =
L(M(E′x′ ,W

′) \M(Ex,W)) = L(M2 \M1). ut

6 Closure under Equivalence

In this section, we give an application of the results in previous three sections.
Namely, we show that development rewrite step −→◦ C is closed under taking
equivalence. It is clear from the definition that −→◦ C is reflexive, and in Theo-
rem 1 we have already shown that −→◦ C is symmetric. Thus, only transitivity is
yet to be shown.

We need one lemma for this.

Lemma 14. For any position DFAs M1,M2, we have L((M2 \M1
−1) \M1) =

L(M2).

Theorem 4 (merging of consecutive steps). Let M1,M2 be position DFAs.
Let s −→◦ ∆

C t and t −→◦ Γ
C u, where ∆ = L(M1) and Γ = L(M2). Then, s −→◦ Λ

C u,
where Λ = L((M2 \M−11)⊕M1).

Proof. From s −→◦ ∆ t and Theorem 1, we have t −→◦ ∆′ s, where ∆′ = L(M−11).

Thus, from t −→◦ ∆′ s and t −→◦ Γ u, we obtain by Theorem 2 that t −→◦ ∆′⊕Γ v for
some v. Furthermore, s −→◦ Π v by the Theorem 3, where Π = L(M2 \M1

−1).
Now we have s −→◦ Π v and s −→◦ ∆ t. Thus, from Theorem 2, we have s −→◦ Λ u′

for some u′, where Λ = Π ⊕∆ = L((M2 \M−11) ⊕M1). Furthermore, we have

t −→◦ Γ ′ u′ by Theorem 3, where Γ ′ = L((M2 \M1
−1) \M1). From Lemma 14,

Γ ′ = L((M2 \M1
−1) \M1) = L(M2) = Γ . Thus, since we have t −→◦ Γ u by

our assumption, we obtain u = u′ from t −→◦ Γ ′ u′. As we have s −→◦ Λ u′, we
conclude s −→◦ Λ u. ut

The following is an immediate corollary of Theorems 1 and 4.

Corollary 1 (closure under equivalence). Equivalence closure of develop-
ment rewrite steps is identical to a single development rewrite step in rational
term rewriting of commutativity rules, i.e.←→◦ ∗C = −→◦ C in rational term rewrit-
ing for any set C of commutativity rules.

12 M. Ishizuka et al.

7 Conclusion

We have studied development rewrite steps −→◦ C of rational term rewriting by
commutativity rules C, where each rewrite step s −→◦ Γ

C t is specified by a regular
set Γ of positions (hence by a finite automaton) in the rational term s. We

have shown the inverse automata construction ()−1 such that s −→◦ L(M)
C t give

rise to t −→◦ L(M
−1)

C s. We have also given the constructions of join M1 ⊕M2

and difference M1 \ M2 of automata M1 and M2 specifying branching steps

s −→◦ L(M1)
C t1 and s −→◦ L(M2)

C t2. Then, consecutive steps s −→◦ L(M1)
C t −→◦ L(M2)

C u

give rise to s −→◦ L(M
′)

C u with M ′ = (M2\M1
−1)⊕M1. As a corollary, it has been

shown that the equivalence closure←→◦ ∗C of development rewrite steps is identical
to a single development rewrite step −→◦ C for any set C of commutativity rules.

A possible future work would be the commutative unification in the setting
of rational term rewriting. It would be also an interesting question how one can
obtain the automata constructions for showing reversibility (i.e. s −→◦ ∗ t implies
t −→◦ ∗ s) of associative-commutative rational term rewriting. Another possible
future work would be to generalize our constructions to deal with any flat rules.

Acknowledgement

Thanks are due to anonymous referees and Akihisa Yamada for helpful com-
ments. This work was partially supported by a grant from JSPS No. 18K11158.

References

1. Aoto, T., Ketema, J.: Rational term rewriting revisited: Decidability and conflu-
ence. In: Proc. of 6th ICGT. LNCS, vol. 7562, pp. 172–186 (2012)

2. Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundamenta Informat-
icae 26, 207–240 (1996)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

4. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning
Volume 1, pp. 445–533. Elsevier (2001)

5. Corradini, A.: Term rewriting in CTΣ . In: Proc. of 18th CAAP. LNCS, vol. 668,
pp. 468–484 (1993)

6. Corradini, A., Gadducci, F.: Rational term rewriting. In: Proc. of 1st FoSSaCS.
LNCS, vol. 1378, pp. 156–171 (1998)

7. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25, 95–169 (1983)

8. Inverardi, P., Zilli, M.V.: Rational rewriting. In: Proc. of 19th MFCS. LNCS,
vol. 841, pp. 433–442 (1994)

9. Kozen, D.C.: Automata and Computability. Springer (1997)
10. Plump, D.: Term graph rewriting. In: Handbook of Graph Grammars and Com-

puting by Graph Transformation Volume 2: Applications, Languages and Tools,
pp. 3–61. World Scientific (1999)

11. Terese (ed.): Term Rewriting Systems, Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

