第5章 多変数関数と偏導関数

領域(1/3)

Aを平面 \mathbb{R}^2 の部分集合とするとき,Aに属さない点全体からなる集合を A^C で表し,Aの補集合という.

Aが十分大きな円をとるとその円にすっかり含まれてしまう場合, Aを有界集合という.

 (x_0,y_0) を平面上の点とし、 δ を正数とするとき、点 (x_0,y_0) を中心とする半径 δ の円の内部

$$\left\{ (x_0, y_0) \middle| \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \right\}$$

 $\delta N((x_0,y_0),\delta)$ で表し、点 (x_0,y_0) の δ 近傍または単に近傍という.

領域(2/3)

十分小さな δ をとると、近傍 $N((x_0,y_0),\delta)$ が集合Aにすっかり含まれてしまうとき、 (x_0,y_0) をAの内点という。

どんな小さな正数 δ に対しても、 $N((x_0,y_0),\delta)$ がAの点も A^C の点も含んでるとき、 (x_0,y_0) をAの境界点という。

Aに含まれる点がすべてAの内点であるとき,Aを開集合という. 補集合A C が開集合のとき,Aを<mark>閉集合という</mark>.

領域(3/3)

2つの連続関数

$$x = x(t)$$
, $y = y(t)$ $(a \le t \le b)$

が与えられているとき、tを定めるごとに平面上の点(x(t),y(t))が定まる. tを $a \le t \le b$ の範囲にわたり変動させたとき、それらの点(x(t),y(t))全体からなる集合を平面上の連続曲線または単に曲線という.

集合Aの任意の2点がAに含まれる連続曲線によって結ばれるならば、Aは連結しているとか連結集合であるという.

連結している開集合を領域という. 領域に, 境界点全部を付け加えた集合は、閉集合となるが, これを閉領域という.

多変数関数の極限(1/2)

2変数関数z = f(x,y)を考える. 任意の正数 ε に対して適当な正数 δ をとると

 $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$ ならば $|f(x,y) - a| < \varepsilon$ が成り立つとき, f(x,y)は点 (x_0,y_0) でaへ収束するとか, 点 (x_0,y_0) におけ極限値はaであるといい

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a, \text{ as a continuous} \lim_{x\to x_0,y\to y_0} f(x,y) = a,$$

$$\text{ as a continuous} f(x,y) \to a \qquad ((x,y)\to(x_0,y_0))$$

で表す.

この極限値とは別に、yを固定しておいてxに関する極限値 $\lim_{x\to x_0} f(x,y)$ をとり、次に yを動かして極限値をとった

 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ や、同様にして定義される $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ を、点 (x_0,y_0) における累次極限値という.

多変数関数の極限(2/2)

Remark:

2つの累次極限値 $\lim_{y\to y_0 x\to x_0} f(x,y)$, $\lim_{x\to x_0 y\to y_0} \lim_{x\to x_0} f(x,y)$ が存在しても、それらが一致するとは限らない.

たとえ一致しても、極限値 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ が存在するとは限らない.

極限値 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ と $\lim_{x\to x_0} f(x,y)$, $\lim_{y\to y_0} f(x,y)$ が存在すれば,累次極限値も存在し、極限値と一致する.

多変数関数の極限の例

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2} ((x,y) \neq (0,0))$$
については、

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = -1, \quad \lim_{x \to 0} \lim_{y \to 0} f(x, y) = 1$$

$$f(x,y) = \frac{xy}{x^2 + y^2} ((x,y) \neq (0,0))$$
については、

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0, \quad \lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0$$

しかし, (x,y)が直線y = mxに沿って(0,0)に近づくとき,

$$f(x,y) = \frac{xy}{x^2 + y^2} = \frac{mx^2}{x^2 + m^2x^2} = \frac{m}{1 + m^2} \to \frac{m}{1 + m^2}$$

となり、mの値によって $\frac{m}{1+m^2}$ の値は異なるので、

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) は存在しない$$

多変数関数の連続(1/2)

関数f(x,y)が点 (x_0,y_0) の近傍で定義されているとき、

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

が成り立つならば、f(x,y)は点 (x_0,y_0) で<mark>連続</mark>であるという. 関数f(x,y)が集合Aの任意の点 (x_0,y_0) において、

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in A}} f(x,y) = f(x_0,y_0)$$

を満たすならば, f(x,y)はAで連続であるとか, A上の連続関数であるという.

Remark:

 $\lim_{\substack{(x,y)\to(x_0,y_0)\\ (x,y)\in A}}$ は点(x,y)がAの中だけを通って点 (x_0,y_0) に近づくと

きの極限を意味する.

多変数関数の連続(2/2)

 $\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in A}}f(x,y)=f(x_0,y_0)$ を $\epsilon\delta$ 論法で表現すると、以下のようになる.

集合Aの任意の点 (x_0,y_0) において、任意の正数 ε に対して適当な正数 δ をとると

$$(x,y) \in A$$
, $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ ならば $|f(x,y) - f(x_0,y_0)| < \varepsilon$

が成り立つ.

 δ は一般的には ϵ だけでなく点 (x_0,y_0) にも関係して決まる数である. この δ が点 (x_0,y_0) には関係せず, ϵ だけに関係して決められるとき, f(x,y)は, Aで一様連続であるという.

偏導関数(1/2)

関数z = f(x,y)が点 (x_0,y_0) の近傍で定義されているとする.

yの値を y_0 に固定したとき、1変数xの関数として $f(x,y_0)$ が x_0 で微分可能ならば、f(x,y)は点 (x_0,y_0) でxに関して<mark>偏微分可能</mark>であるといい、その微分係数

$$\lim_{x \to x_0} \frac{f(x,y_0) - f(x_0,y_0)}{x - x_0}$$
, すなわち $\lim_{h \to 0} \frac{f(x_0 + h,y_0) - f(x_0,y_0)}{h}$

を点 (x_0,y_0) におけるxに関する偏微分係数という.

これを

$$f_x(x_0, y_0), \quad \frac{\partial}{\partial x} f(x_0, y_0), \quad \frac{\partial f(x_0, y_0)}{\partial x}$$

などの記号であらわす.

偏導関数(2/2)

関数z = f(x,y)が領域Dで定義されているとき,Dのすべての点(x,y)でxに関して偏微分可能ならば,f(x,y)はDでxに関して偏微分可能であるという.

そのとき, $f_x(x,y)$ はDにおける2変数関数となっているが, このように, 2変数x,yの関数と見た $f_x(x,y)$ をxに関する偏導関数という. $f_x(x,y)$ を表すには,

$$z_x$$
, $\frac{\partial}{\partial x} f(x,y)$, $\frac{\partial f(x,y)}{\partial x}$, $\frac{\partial z}{\partial x}$

のような表し方もある.

yに関する偏微分係数 $f_y(x_0,y_0)$ や偏導関数 $f_y(x,y)$ も同様にして定義される.

偏導関数 $f_x(x,y)$, $f_y(x,y)$ を求めることを、それぞれf(x,y)をxに関して、yに関して偏微分するという。

偏導関数の計算例

次の関数の偏導関数を求めてみよう.

(1)
$$z = x^3 + y^3 - 3xy$$
 (2) $z = x^3y^2 \sin y$ (3) $z = e^{\frac{y}{x}}$

(1)
$$z = x^3 + y^3 - 3xy$$

 $z_x = 3x^2 - 3y$, $z_y = 3y^2 - 3x$

(2)
$$z = x^3 y^2 \sin y$$

 $z_x = 3x^2 y^2 \sin y$, $z_y = 2x^3 y \sin y + x^3 y^2 \cos y$

(3)
$$z = e^{\frac{y}{x}}$$

 $z_x = e^{\frac{y}{x}} \left(-\frac{y}{x^2} \right) = -\frac{ye^{\frac{y}{x}}}{x^2}, \qquad z_y = e^{\frac{y}{x}} \left(\frac{1}{x} \right) = \frac{e^{\frac{y}{x}}}{x}$

全微分

関数z = f(x,y)が点(a,b)で全微分可能とは、定数A,Bが存在して $f(x,y) = f(a,b) + A(x-a) + B(y-b) + o\left(\sqrt{(x-a)^2 + (y-b)^2}\right)$ が成り立つことである. ここで, $o\left(\sqrt{(x-a)^2+(y-b)^2}\right)$ は $\lim_{(x,y)\to(a,b)} \frac{g(x,y)}{\sqrt{(x-a)^2 + (y-b)^2}} = 0$ を満たすg(x,y)を指す(高位の無限小). このとき、 $A = f_{\chi}(a,b), B = f_{\chi}(a,b)$ となり、

$$f(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + o\left(\sqrt{(x-a)^2 + (y-b)^2}\right)$$

と書ける. x - a = h, y - b = kとして,

$$f(a+h,b+h)-f(a,b)=f_x(a,b)h+f_y(a,b)k+o\left(\sqrt{h^2+k^2}\right)$$
 となる. このことから $df=f_x(x,y)dx+f_y(x,y)dy$ を $z=f(x,y)$ の全微分という.

13

全微分の計算例

次の関数の全微分を求めてみよう.

$$z = f(x, y) = x^3y + \sin xy$$

$$\frac{\partial}{\partial x} f(x,y) = 3x^2y + y \cos xy$$
$$\frac{\partial}{\partial y} f(x,y) = x^3 + x \cos xy$$
よって、 $z = f(x,y)$ の全微分は、
$$df = (3x^2y + y \cos xy)dx + (x^3 + x \cos xy)dy$$